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Abstract 

Background: Climate change mitigation policy decisions are increasingly incorporating the 

beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of 

such co-benefits and co-harms involve modeling approaches requiring a range of analytic 

decisions that affect the model output. 

Objective: Our objective was to assess analytic decisions regarding model framework, 

structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, 

and to make recommendations for improvements that could increase policy uptake. 

Methods: We describe the assumptions and analytic decisions underlying models of mitigation 

co-benefits, examining their effects on modeling outputs, and consider tools for quantifying 

uncertainty. 

Discussion: There is considerable variation in approaches to valuation metrics, discounting 

methods, uncertainty characterization and propagation, and assessment of low-probability-high-

impact events. There is also variable inclusion of adverse impacts of mitigation policies, and 

limited extension of modeling domains to include implementation considerations. Going 

forward, co-benefits modeling efforts should be carried out in collaboration with policymakers; 

include the full range of positive and negative impacts and critical uncertainties; include a range 

of discount rates; and explicitly characterize uncertainty. We make recommendations to improve 

the rigor and consistency of modeling of health co-benefits. 

Conclusion: Modeling health co-benefits requires systematic consideration of the suitability of 

model assumptions, of what should be included and excluded from the model framework, and 

how uncertainty should be treated. Increased attention to these and other analytic decisions has 

the potential to increase the policy relevance and application of co-benefits modeling studies, 
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potentially aiding policymakers in efforts to maximize mitigation potential while simultaneously 

improving health. 
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Introduction  

Climate change poses one of this century’s most significant public health challenges (Chan 

2009). There is growing recognition that strategies to reduce greenhouse gas (GHG) and climate-

active aerosol emissions (“mitigation” strategies) will affect numerous upstream drivers of public 

health, including indoor and outdoor air pollution, water security and quality, food security and 

quality, and physical activity, with the potential for beneficial and adverse impacts (Table 1; 

Haines et al. 2009; Little and Jackson 2010; Newmark et al. 2010). 

Importantly, many mitigation-related health impacts accrue sooner than the impacts projected 

from climate change. Studies published in the Lancet in 2009 highlighted this, suggesting 

significant net health benefits across several mitigation strategies and settings (Haines et al. 

2009). Studies in this series used modeling to estimate the differences in, and magnitude of, 

health co-benefits of mitigation actions in various sectors, as well as discussing the potential for 

adverse health impacts, or co-harms. Subsequent analyses in the US extended these findings 

(Grabow et al. 2012; Maizlish et al. 2013). 

Studies estimating the ancillary health effects of mitigation strategies (termed co-benefits from 

here forward, while acknowledging that co-harms also may result) use a range of modeling 

approaches, drawing expertise from public health, agriculture, environmental sciences, urban 

planning, and other disciplines to generate policy-relevant outputs. We review a number of 

specific issues with modeling co-benefits of mitigation strategies, including those related to 

model framework, structure, and choice of parameters, and the implications of these for policy 

uptake. Some of these issues are common to other types of modeling, so our discussion could be 

applied to similar concerns arising in the development of health impact assessments (European 
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Centre for Health Policy 1999; Kemm 2007) and the modeling of certain climate change 

adaptation activities, which also have co-benefits and co-harms (Cheng and Berry 2013). We 

focus specifically on mitigation co-benefits modeling, however, for several reasons: first, all co-

benefits modeling of climate change mitigation policies necessarily requires attention to these 

issues whereas not all health impact assessment efforts, or efforts to quantify ancillary impacts of 

adaptation strategies, do; second, greenhouse gas emission reduction policies can influence a 

range of major risk factors that contribute substantially to global disease burden whereas climate 

change adaptation strategies result in health co-benefits predominantly by increasing resilience to 

existing climate variability; third the field of health impact assessment studies is much broader 

and would require a wider-ranging discussion; and fourth, to date there has not been a systematic 

consideration of the methodological issues related to modeling health co-benefits of climate 

change mitigation policies. 

Modeling of co-benefits generally takes the basic approach shown in Figure 1, employing a wide 

variety of methods such as comparative risk assessment (Smith and Haigler 2008); complex 

mechanistic components (such as those describing building physics, e.g., Wilkinson et al. 2009); 

and macroeconomic, technological, and behavioral models (NRC 2010). The range of modeling 

approaches commonly used is detailed in Supplemental Material, Table S1. The table also 

includes central estimates of health co-benefits reported by selected studies. 

Several overlapping challenges are common to co-benefits modeling studies (Bell et al. 2008; 

Haines et al. 2009; HEI International Scientific Oversight Committee 2010; Matus et al. 2008; 

Patz et al. 2008; Smith and Haigler 2008), including: 
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•	 modeling the time course of strategies that are phased-in over time, and the resulting 

time-varying levels of exposures to health drivers; 

•	 taking into account the varying lag times between changes in exposure and changes in 

health outcomes according to the health outcome concerned; 

•	 incomplete methods for quantifying and conveying the degree and sources of uncertainty 

associated with the modeling outputs; 

•	 debate over key parameters, such as discount rates and terms involved in the economic 

valuation of health outcomes; and 

•	 estimating future economic development pathways and GHG emissions, and projecting 

trends in demographics, health status, and levels of exposures to health drivers over the 

relevant time course. 

This paper is an initial effort to address some of these challenges, with a focus on modeling 

issues (time course of exposures and impacts; uncertainty; and low probability, high impact 

effects) and issues affecting relevance (discount rate selection, decision analysis, and inclusion of 

factors affecting policy uptake and system dynamics). We conclude with recommendations to 

advance the rigor and consistency of co-benefits modeling. 

Key  modeling issues  

Health co-benefits models typically begin with a mapping exercise that proceeds to a more 

formal mathematical model describing relationships between model components and outcomes 

of interest. This process may involve identification of specific indicators of health impacts. A 

number of different frameworks are available (e.g., Hambling et al. 2011), and the relationships 

identified in the mapping process can be formally quantified and assessed using a variety of 

strategies. 
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Initial mapping to model construction  

Modeling can be used to answer a specific set of policy questions regarding the health impacts of 

particular mitigation options. An important initial step is developing a conceptual framework 

linking the mitigation policy to specific public health drivers in the near- and mid-term over 

which beneficial health impacts accrue. Modeling efforts begin with description of the system 

boundaries, major associations between different model components, outcome indicators and 

their metrics, and definition of the counterfactuals (e.g., “business as usual”) used for 

comparison. For instance, in estimating the impact of introducing low-emission cookstoves in 

India on health impacts of household air pollution, the initial conceptual map included 

population growth and demographics, proportion of the population with low-emission 

cookstoves, major health outcomes associated with elevated levels of household air pollution, 

and historical experience implementing national cookstove interventions, but not the potential 

effects on household income (Wilkinson et al. 2009). 

The models constructed from these mapping exercises should capture the key associations 

between model components and the outcomes of interest within the scale and scope of the 

project. Unfortunately, not all relationships are well understood and not all parameters are well 

studied. For instance, there are questions about the mitigation potential of cookstove 

interventions because stove emissions can force climate negatively or positively (Wilkinson et al. 

2009). Likewise, poor maintenance of household energy interventions such as anaerobic 

digesters can lead to direct emissions of potent GHGs into the atmosphere (Dhingra et al. 2011), 

potentially limiting their long-term performance. While such uncertainty does not affect the 

resulting estimates of health impacts of a mitigation strategy, it does affect the confidence in 
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estimates of efficacy of the mitigation strategy relative to other options (Haines et al. 2009). 

Modelers must decide what to include and how to define the range of input parameters based on 

the best available evidence. 

Modeling complex, time-varying exposures and impacts  

Several key time-varying elements of mitigation policies must be made explicit, such as the time 

course for intervention implementation (e.g., low-emission cookstoves) and associated exposure 

changes (e.g., reductions in household air pollution). Mitigation activities may be represented in 

models as enacted instantaneously, in steps, or gradually phased in, although most integrated 

assessment models assume instantaneous and perfect implementation (first-best worlds). Most 

co-benefit models consider step-changes in mitigation interventions (Cifuentes et al. 2001; 

Maizlish et al. 2013; Woodcock et al. 2013). Ideally, models should employ a time-course 

empirically based on analogous interventions (Wilkinson et al. 2009). Similarly, exposures 

should be modeled to reflect those temporal characteristics most strongly associated with health 

outcomes—e.g., peak levels are most relevant for some hazards, cumulative and long-term 

exposures for others (Lin et al. 2008; Murray et al. 2003; Robins and Hernan 2009). The 

dynamic response between disease and exposure must also be considered, requiring an 

accounting of cumulative exposures and associated morbidity and mortality among an age-

stratified cohort over time (Matus et al. 2008). Table 2 shows the approximate time-lags over 

which health co-benefits are likely to accrue for the strategies explored in recent co-benefit 

analyses (Friel et al. 2009; Jarrett et al. 2012; Wilkinson et al. 2009; Woodcock et al. 2013). 

Numerous methods are available to incorporate time-varying exposures and associated time-

varying health effects when appropriate, including comparative risk assessment approaches (Lin 
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et al. 2008; Murray et al. 2003), modification of the standard static Cox proportional hazard 

model (Haneuse et al. 2007), and functional approximation methods that associate health 

outcomes with exposure history (Bandeen-Roche et al. 1999). As an alternative, co-benefits 

studies can use time functions not directly derived from epidemiological studies that are 

parameterized to simulate the time lag in health effects in response to changes in exposure. For 

example, Jarrett et al. (2012) used sigmoid lag functions to simulate delays in the response of 

depression, ischemic heart disease and other effects to changes in exposure to physical activity. 

 Estimating adverse effects of mitigation strategies 

The validity of a modeling analysis in part depends on inclusion of all relevant pathways 

between mitigation strategies, consequent exposures, and outcomes of interest. This requires 

including pathways that increase risk (co-harms) or decrease it (co-benefits). Potential co-harms 

of various mitigation strategies include reduced affordability of food leading to poor nutrition (if, 

for example, pastoralists in poor countries have to reduce their consumption of animal products; 

Friel et al. 2009); rising energy costs pushing the poor towards low-quality biomass fuels 

(Markandya et al. 2009); and increases in air pollution from combustion of biofuels (Jacobson 

2007). 

An example of an adverse impact with a relatively simple causal pathway is increased pedestrian 

and cyclist exposure to road traffic injuries resulting from an increase in active transport 

(DiGuiseppi et al. 1997; Jarrett et al. 2012; Woodcock et al. 2009). In one analysis, estimated 

increases in morbidity and mortality from pedestrian and cyclist road traffic injuries in London 

were more than offset by decreases in Disability Adjusted Life Years (DALYs) lost from 

physical inactivity and to a lesser extent air pollution (Woodcock et al. 2009), a finding 
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reinforced by Lindsay et al. (2010). More complex, indirect pathways can also yield adverse 

impacts, such as where switching some agricultural production from food to biofuel feedstocks 

can have complex, recursive macroeconomic effects including shifts in prices of various food 

staples (Chakravorty et al. 2009). In 2007, for instance, expanded biofuels production was 

estimated to be responsible for approximately 30% of the rapid rise in grain prices (Rosegrant 

2008). Such price increases, along with other economic shocks, increase undernutrition (Bloem 

et al. 2010; Friel et al. 2009), a major risk factor for under-five mortality (Black et al. 2008). One 

analysis found that such dynamics likely increased child mortality in East and Southeast Asia in 

2007 (Bhutta et al. 2008; Christian 2010). Large uncertainties exist, including the complex 

relationships between supply, demand, and global food prices (Mitchell 2008); in regional 

resilience to price spikes (Webb 2010); and in other drivers for the multiple health endpoints of 

undernutrition (Black et al. 2008). Despite these difficulties, nutrition-mediated health effects of 

some biofuel policies serve as a good example of a tractable co-harms estimation problem that 

could be used to inform future mitigation decisions (Bloem et al. 2010; Christian 2010; Friel et 

al. 2009). 

  Low probability events with highly adverse impacts 

Certain mitigation technologies are associated with low-probability, high-impact co-harms, such 

as severe nuclear power plant accidents, catastrophic failures of so-called 'mega-dams,' and leaks 

from carbon capture and storage (CCS; Bickel and Friedrich 2005; Markandya et al. 2009). This 

class of adverse impacts is challenging to estimate: low probability high impact exposures are 

highly uncertain and episodic, so deterministic exposure functions cannot be directly applied. 

Event (i.e., accident) data for certain mitigation options are sparse, making alternative analytical 
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approaches, such as estimating expected damage, difficult (e.g., Ha-Duong and Loisel 2010). 

Importantly, when the expected harms of these risks are quantified, estimated impacts can be 

considerably smaller than public perceptions of these risks (Krupnick et al. 1993). Incorporating 

risk perception heuristics—in which the public views risks associated with these events as more 

problematic than more routine events with the same expected value (Bier et al. 1999)—into co-

benefits modeling is an important frontier to explore. 

Methods for the treatment of uncertainty  

Uncertainties are inherent to modeling studies and permeate complex policy decisions such as 

those surrounding climate change mitigation. Uncertainties in modeling health co-benefits 

include: (i) simulating the spatial and temporal changes in health-relevant exposures; (ii) 

determining the time response of the health effects due to exposure changes; (iii) comparing 

alternative mitigation interventions in terms of their health effects across populations and time-

scales; and (iv) establishing the assumed time-course of future disease-specific burdens in the 

absence of mitigation. 

There has been much discourse on dealing with uncertainty, particularly with respect to the 

integrated assessment models used to evaluate mitigation policies, that is relevant for co-benefits 

modeling (Mearns 2010; J Rotmans and M Van Asselt 2001; J Rotmans and MBA van Asselt 

2001; Visser et al. 2000; Webster et al. 2003). Co-benefits studies often take a simplistic, one-

dimensional approach to propagating the multiple sources of uncertainty (Schneider and Kuntz-

Duriseti 2002). Uncertainties are cascaded sequentially through model components starting with 

“upstream” drivers (e.g., mitigation options, emissions, carbon cycle response, and global 

climate sensitivity) and then “downstream” to local climate change, exposures, and health 
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impacts. Socio-economic change, as an example, contributes significant downstream uncertainty 

(Arnell et al. 2004). In some circumstances the combined uncertainty, particularly over the long 

term, makes it difficult to determine the balance of costs, co-benefits, and co-harms, but 

additional methods can help narrow estimates substantially, particularly in the near-term. The 

following sections summarize several quantitative approaches. Overcoming challenges in 

integrating quantitative and non-quantitative approaches to uncertainty characterization is also 

very important. 

 Uncertainty propagation through models 

Model uncertainty can be classified as structural or parametric (Refsgaard et al. 2006; Tebaldi 

and Knutti 2007). Structural uncertainty refers to uncertainty in the constitution of the model, 

such as the configuration of the air dispersion Gaussian model; the make-up of the exposure 

pathways (e.g., inhalation, ingestion); and the types of exposure-response relationships (e.g., 

linear, threshold-linear, non-linear). Structural uncertainty also results from assumptions and 

simplifications used to construct the health model (Bojke et al. 2009). Parametric uncertainty, on 

the other hand, relates to uncertainty in the model’s parameters, conditional on a specific 

structure, such as uncertainties in the threshold and slope of a threshold-linear exposure-response 

relationship, or the indoor/outdoor concentration ratio for PM2.5. Such types of uncertainty 

permeate science and conventional epidemiological research, such as in the relationship between 

an energy efficiency intervention and exposure to household air pollutants (Table 3 shows 

several examples). 

Although there is no single best way of characterizing uncertainty in an analysis, there is a need 

for consistency and transparency in handling it. Indeed, many of the methods used for handling 
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uncertainty in complex environmental models can be used in this context (Rao 2005; Refsgaard 

et al. 2007), as can deterministic and stochastic techniques from health impact models (Lopez et 

al. 2006). There are several unique uncertainty issues that arise in co-benefit analyses, such as 

the uncertainty in future projections over the time horizon of analysis of disease-specific burdens 

in the absence of mitigation. These projections are the baseline against which burdens with 

mitigation are compared, and thus represent a primary source of uncertainty. The current disease 

burden is often adopted as the baseline but this is rarely appropriate as development will occur 

and bring with it technology and other changes that will alter disease burdens, such as the 

ongoing, rapid increases in the burden of non-communicable diseases in low- and middle-income 

countries (Remais et al. 2013). 

 Characterizing structural uncertainty 

There are two main approaches for characterizing structural uncertainty in co-benefits modeling. 

The first simulates different model structures and then combines their outputs deterministically 

(e.g., Knutti et al. 2010); the second does the same but combines the outputs probabilistically 

(e.g., Min et al. 2007). The first approach is easier to implement, particularly for co-benefit 

analyses with a small number of alternative model structures. The output is either a series of 

single co-benefit projections (one for each structure or combinations of structures), or a sum of 

outputs weighted by the confidence in the model structure used to generate each. The second 

approach uses Bayesian model averaging to produce a weighted probability density function. 

This approach is useful when there are many alternative model structures to consider, but may 

not be feasible when the computational time to run each alternative model structure is high. 
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Structural uncertainties can have large impacts on estimated health effects of mitigation. For 

instance, in the Woodcock et al. (2009) analysis of the health effects of increased physical 

activity resulting from transport-related mitigation strategies, uncertainty in the physical activity 

exposure-response relationship (e.g., linear versus square root) led to more than a doubling of the 

estimated health effects as measured by premature deaths or DALYs lost. To characterize the 

influence of structural sources of uncertainty, alternative model structures (i.e., functional forms) 

can be used to represent the exposure-response relationship, providing an estimate of the 

uncertainty in health effects as a function of structural choices. 

 Characterizing parametric uncertainty 

Parametric uncertainty can arise in situations where there is limited information on the nominal 

or central value of a model parameter. For instance, in assessing the health co-benefits of 

mitigation in México City, Cifuentes et al. (2001) calculated the central estimate of the number 

premature deaths avoided as 29,055 in the period 2000 to 2020. The authors used an estimate of 

the uncertainty in the relative risk in mortality for a 10 µg m-3 change in PM10 concentration to 

calculate the 95% confidence interval of premature deaths avoided (9,265-56,293). An 

alternative approach, particularly useful when an estimate of the variance of parameter is 

unavailable, is to characterize the uncertainty in the relative risk as an interval (i.e., the 

parameter’s value can be anywhere between a lower and upper bound) and compute an 

associated interval of model output (De Figueiredo and Stolfi 2004). Such parameter bounds can 

be elicited from expert opinion, literature reviews, or model simulations. 

Finally, stochastic approaches are also available in which a probabilistic sensitivity analysis is 

carried out with parameter values drawn randomly from the respective parameter spaces. In this 
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case, Monte Carlo (MC) simulation or Latin Hypercube Sampling (LHS) are used to repeatedly 

sample the parameter space, generating a distribution of model outputs. These methods are 

widely used when the uncertainty in parameters can be expressed as probability density functions 

(Helton et al. 2005). LHS is a stratified version of MC sampling that for the same number of 

samples is more likely to reproduce faithfully the probability density function than MC 

sampling; MC sampling on the other hand is easier to implement (McKay et al. 1979). Recent 

advances in dynamic sensitivity analysis (Wu et al. 2013) may offer promise for co-benefits 

analyses where complex dynamics result from the coupling of shifting time courses of mitigation 

phase-in, time-varying exposures, and varying lags times over which health impacts evolve. 

 Propagating uncertainties 

Uncertainty propagation through a series of model components should be consistent with 

fundamental principles of error propagation, with proper linking of submodel outputs and inputs 

(Mekid and Vaja 2008). Yet standard error propagation can quickly become infeasible for large, 

multipart models. For example, in calculating the health co-benefits of GHG mitigation in the 

electricity sector in the US, Burtraw et al. (2003) combined two large-scale models in which the 

output of one model fed into the input of the other. The first model simulated electricity demand, 

generation, consumption, and emissions of air pollutants, while the second took the emissions 

from the first, and calculated the associated health impacts. Each of the two models comprised a 

number of complex sub-models (e.g., pollutant transport, dose-response, etc.), and, although not 

attempted, only a limited propagation of uncertainties through this long chain of models and sub-

models would have been possible. Even when quantitative uncertainty propagation is feasible, 
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additional information can be gained from qualitative approaches, such as storylines, that can 

represent uncertainties associated with different futures (e.g., Arnell et al. 2004). 

  Using Value of Information analysis to identify key uncertainties that can be reduced 

Given the diversity of uncertain parameters in health co-benefits modeling and the infeasibility 

of investigating all uncertain parameters, there is a need to determine the parameters whose 

uncertainty would be most easily and strategically reduced through additional research. Experts 

can use a Value of Information (VOI) analysis to determine which new data will most likely 

yield more precise estimates. VOI analysis determines the return, or payoff in terms of making 

better decisions, of collecting additional information (Yokota and Thompson 2004). VOI has 

been used to identify research priorities in climate change research (Rabl and Van der Zwaan 

2009) although not yet to improve parameterization of models used to estimate health co-benefits 

of mitigation policies. Reduced parametric uncertainty can help decision makers avoid costly 

errors, and future co-benefits analyses may choose to express the expected return of investing in 

improved parameter estimates in monetary terms (Coyle and Oakley 2008). 

Addressing key science policy and decision support  issues  

Co-benefits models are generally intended to inform the policymaking process, including 

modeling carried out in response to a specific policy question under consideration by a particular 

governing body. Rising interest in the links between climate change mitigation and public health 

will increase the possibility that such modeling may be brought to bear on policy decisions. To 

that end, the context in which the model outputs will be used is highly relevant to modeling 

decisions. Policymaking needs are context-specific, and in the case of modeling health co-

benefits, model parameters may differ based on how health care delivery and public health costs 
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are borne across sectors (e.g., how care is funded and handled at various levels of government). 

In developing their models and presenting their findings, researchers need to work with 

policymakers from the outset to ensure that the questions asked and analyses conducted, are 

policy relevant. 

A number of initiatives are underway that can serve as blueprints for building closer links 

between researchers and policymakers, such as the WHO EVIpNet initiative (WHO 2011) and 

REACH in East Africa (EAC 2011). Despite such precedents, questions remain as to how to 

address certain key decision support issues. In particular, questions remain regarding the most 

ethically, morally, and economically defensible approach to valuation of future human health and 

well-being, whether and how to use discount rates, and what tools are best for comparing 

disparate types of costs, benefits, and constraints. 

The role of discounting and the effect of different discount rates   

Discount rates are central to all decisions with long-term implications, including co-benefits 

analyses that account for multiple costs and benefits distributed over time (Ackerman et al. 2009; 

Smith and Haigler 2008). When modeling health co-benefits, the basic function of discount 

terms is to convert future health and climate consequences of a mitigation measure into their net 

present value by subjecting the stream of monetized benefits and costs to a discount rate. There 

are several options for handling discounting, including ignoring it altogether, or selecting 

constant, variable, or multiple rates for different components. 

 Setting the discount rate to zero 

Avoiding discounting when modeling health co-benefits is equivalent to selecting a zero rate, 

which equates mitigation benefits and costs experienced today with those experienced in the very 
18



        

        

          

     

            

             

 

         

        

         

        

      

       

           

        

          

    

        

        

  

distant future. This may lead to situations where the current generation makes excessive 

sacrifices to future generations (Lopez et al. 2006). A major reason for discounting future 

benefits and costs is the expectation that future generations will be better off economically than 

present generations(Maddison 2001). Yet given the limitations on future growth imposed by 

resource constraints, it may be the case that we experience a period of near zero real economic 

growth. In that case a discount rate of zero or close to it may be justified depending on the time 

period of analysis. 

 Setting the discount rate to a constant above zero 

Setting a non-zero discount rate can have equally unacceptable consequences by making 

catastrophic outcomes in the distant future appear trivial at today's decision point, potentially 

biasing decisions against the interests of future generations (McMichael and Campbell-Lendrum 

2003). Moreover, there is no consensus as to which discount rate to use (Weitzman 2001). This 

is problematic because widely varying policy decisions can be defended depending on the 

particular rate selected, posing a major challenge for analysis. One approach is to use several 

plausible rates to identify policies that are robust to the choice of rate (Lopez et al. 2006; 

Markandya et al. 2009; McKinley et al. 2005). Yet because of the strong sensitivity to the 

discount rate chosen, few policies may indeed be robust and the benefits or costs may differ by 

large factors. For instance, in a model examining low-carbon electricity generation scenarios 

achieved through different degrees of emissions trading, Markandya et al. (2009) found that 

when the discount rate applied to lost life-years was increased from 0% to 3%, the estimated 

health co-benefits of low-carbon electricity generation scenarios were reduced by about 50%. 
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Some argue that a declining discount rate, which attaches increasing weight to the welfare of 

future generations, better reflects empirical data on individual preferences and is in agreement 

with various theoretical results (Dasgupta 2001; Heal 1997; Newell and Pizer 2003; Pearce et al. 

2003; Reinschmidt 2002; Weitzman 2001). While full hyperbolic discounting has not been 

supported by policymakers, there is a move towards declining discount rates driven by the 

dynamic uncertainty of future events (Pearce et al. 2003). Declining discount rates imply, for 

example, discounting benefits and costs that occur over the next 30 years at one rate, followed by 

a lower rate for benefits and costs that occur over the following 30 years and so on. 

As an alternative to explicit discounting, some efforts instead use time-horizons for certain 

terms, producing the odd result where consequences (i.e., costs or benefits) of an emission are 

only accrued up to a point, after which additional costs are ignored (Smith and Haigler 2008). 

Some have argued that smooth annual discounting functions are more sensible than the step-

functions implied by such time-horizons, such as those used to express the warming 'costs' of an 

emission (Smith and Haigler 2008). Others argue that the various components common to co-

benefits modeling should be discounted at different rates (Brouwer et al. 2005; Gravelle and 

Smith 2001). 

Discount rates and their associated assumptions should be explicitly addressed in co-benefits 

research. For a particular intervention with both climate and health effects, rates must be 

specified for the costs of intervention ($), the impact on the global climate (t CO2e), the health 

effects (DALYs) and the monetized health benefits ($), as discussed in (Smith and Haigler 

2008). Where available, locally estimated discount rates that reflect the specific values of 
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affected populations should ideally be used. But because these are rarely available, and because 

there is no consensus on the selection of universal rates, an alternative approach would be to 

present results using several rates, including 0% and 3%, preferred values used by policymakers. 

Examining the implications of declining rates (H.M.Treasury 2003) would also be worthwhile. 

Evaluating mitigation options using decision analysis  

Accounting for potential health impacts of mitigation strategies is important, but many impacts 

unrelated to health exist, and policymakers require that alternative mitigation strategies be 

evaluated on the basis of many criteria simultaneously (Konidari and Mavrakis 2007; Swart et al. 

2003). Valuation methods capable of considering trade-offs among multiple cost and benefit 

criteria under uncertainty are thus more likely to be policy relevant. To that end, the quantitative 

information on health criteria must be considered alongside non-health criteria, including 

economic growth, environmental sustainability, political acceptability, cost and financing 

considerations, expediency, and equity issues. Each of these can in turn be divided into detailed 

sub-criteria, resulting in a deep hierarchical structure that defies single-criterion analytical 

approaches. For example, a cost and financing criterion could have sub-criteria that include 

implementation costs, health services costs from changes in disease burden, opportunity costs of 

capital or land, and so forth. The performance of a mitigation strategy is unlikely to be positive 

(or negative) across all such criteria, and comparing short-term performance on certain criteria to 

long-term performance can raise important ethical questions, e.g., how should policymakers treat 

a renewable energy strategy that lowers short-term economic growth (and is thus temporarily 

detrimental to health due to reduced employment), but increases net health over the long-term 

from reduced pollutant emissions? Other ethical questions are raised by the fact that multiple 
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criteria can at times represent competing stakeholder interests, e.g., a policy substituting active 

transport for single-occupancy vehicle use that reduces health costs while also decreasing 

revenues in the automotive sector. 

 The importance of consistent summary measures 

Decision makers manage considerable complexity in part by determining which criteria are most 

relevant. At the same time, having a few summary or principal measures that are used 

consistently to assess different strategies greatly improves comparability. For example, a 

common measure for evaluating and comparing health co-benefits across alternative mitigation 

strategies and across countries is the health burden (DALYs) avoided, expressed per unit 

population size and per Mt CO2e saved (Smith and Haigler 2008). Another useful and widely 

used measure is the net cost per ton of GHG emissions reduced. Many of the relevant outcomes, 

including health impacts, can, in principle, be converted into a monetary cost (Creutzig and He 

2009). These costs can then be added to, or netted out, from the direct costs of the mitigation 

measures, giving a net cost figure per ton reduced. In calculating the measure, analysts face the 

problems described above (discounting, uncertainty, etc.), but the resulting information, partial 

as it is and with all its qualifications, is useful in deciding where to allocate scarce resources. The 

direct costs of mitigation may be, for example, US$30 per ton of CO2e, but when health co-

benefits are accounted for, the figure may drop substantially or even become negative (i.e., result 

in net savings). 

 Multi-Criteria Decision Analysis 

Several decision analytical methods can be used to compare and evaluate alternative mitigation 

options in terms of their health and non-health impacts. These include traditional cost-benefit and 
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cost-effectiveness methods used for environmental interventions (Haller et al. 2007; Hutton 

2008). Because the impacts of mitigation are often multi-dimensional, more complex 

measures—and analytical methods—are needed for evaluating trade-offs. Multi-criteria Decision 

Analysis (MCDA) approaches have been used for this purpose in some policy areas, and their 

application to climate change policies is gaining momentum (Bell et al. 2001; Bell et al. 2003; 

Benegas et al. 2009; De Bruin et al. 2009; Kueppers et al. 2004; Stalpers et al. 2008; Wilbanks 

2005). 

There are unresolved issues in the application of MCDA methods to valuation of mitigation 

strategies. Traditional MCDA assumes that all criteria are evaluated at the same point in time. 

When comparing mitigation strategies where health is one of the criteria, assigning a relative 

weight to the health co-benefits criterion can be difficult because the immediate reduction in 

hazardous exposures does not often give rise to immediate health benefits (Jarrett et al. 2012; 

Wilkinson et al. 2010; see also Table 2). This time course can be very different from that of the 

impacts of other criteria. In addition, because uncertainty increases into the future, issues 

surrounding attitudes towards risk (in the presence of uncertainty) and time preference become 

intertwined, complicating discount rate choices (see Traeger 2009). 

Strategies to extend the model domain and policy utility  

Future directions for modeling co-benefits include enhancing policy relevance, addressing policy 

resistance, and characterizing implementation (including diffusions of new behaviors and 

technical shifts). Literature in recent years with respect to policy relevance highlights the 

importance of iteration between scientists and policymakers in developing usable science 

(Dilling and Lemos 2011). The National Oceanic and Atmospheric Administration Regional 
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Integrated Science and Assessments (RISA) program is an example focused on climate change 

adaptation. RISA works with diverse user communities to advance contextual understanding of 

adaptation policy and management decisions; to develop knowledge on impacts, vulnerabilities 

and potential response options; and to facilitate decision support tool development (NOAA 

2012). Such an approach also may be particularly well suited to facilitating mitigation policy 

decisions. 

“The counterintuitive behavior of social systems” (Forrester 1971) or “policy resistance” arises 

when policies that affect complex, dynamic systems result in unexpected outcomes, e.g., 

antibiotic resistance as a result of aggressive infection control or increased wildfire severity as a 

result of fire suppression (Sterman 2000). Systems dynamics methods (Sterman 2006) alone or in 

concert with other approaches such as discrete event simulation (Brailsford et al. 2010) can 

increase the likelihood of effective policy formulation (Thompson and Tebbens 2008) by 

addressing feedback loops that affect policy resistance. Many health co-benefit analyses 

characterize the health impacts of societal changes, such as widespread adoption of active 

transport policies or significant shifts in consumption of animal products, without a detailed 

consideration of how implementation might occur (e.g., Friel et al. 2009; Woodcock et al. 2009). 

Approaches such as agent-based modeling can help characterize diffusions of such innovations 

within populations and the role of organizations in catalyzing and maintaining significant policy 

shifts (Bonabeau 2002). 

Conclusions and recommendations  

Estimating the health impacts of GHG mitigation strategies is a complex process that brings 

together disparate disciplines. Because all models are simplifications that involve assumptions, 
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are subject to many uncertainties, and capture a subset of interactions, modeling health co-

benefits requires systematic consideration of the suitability of model assumptions, of what 

should be included and excluded from the model framework, and how uncertainty should be 

treated. The ultimate goal of modeling is policy utility, and it is important for modelers to 

iteratively engage policymakers actively in their work. Despite the challenges, there is a great 

need for information on the health implications of mitigation strategies, particularly given the 

urgency of bringing mitigation strategies into practice and the early accrual of ancillary health 

impacts of these strategies. This paper reviewed some of the challenges and controversies in 

modeling health co-benefits and co-harms, and some approaches to increase their utility. 

Recommendations to improve such models include: 

1.	 Modeling health co-benefits should be done in concert with policymakers from the start 

and should focus on potentially feasible interventions based on policymaker consultation, 

identification of policy-relevant outcomes, and incorporation, where needed, of methods 

to evaluate potential policy resistance. Model scoping should include consultation with 

policymakers and scientists from a range of disciplines to ensure a full complement of 

potential impact pathways is considered. Focusing on domains and channels wherein 

modeling was used to affect policy may increase the potential utility of modeling efforts. 

2.	 Initial stages of analysis should identify the full range of potential positive and negative 

pathways to health impacts within predefined boundaries, as well as the critical 

uncertainties in these causal pathways, while making explicit the criteria used to 

determine which exposure-outcome relationships are included in the model. The 

assessment of the strength of evidence for exposure-outcome relationships and 

parameters should use systematic review (Moher et al. 2009) and consensus methods 

(Guyatt et al. 2008). 

3.	 The period over which the mitigation and health impacts are analyzed must be carefully 

assessed, both in relation to the time course between implementation of mitigation and 

consequent impacts, and in relation to time preferences for specific outcomes and the 
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associated choice of discount rates. At a minimum, valuation estimates should be 

presented using a range of fixed discount rates including 0% and 3%, and consideration 

should be given to estimates using declining rates over time. 

4.	 Uncertainty in modeling results should be characterized explicitly, using quantitative and 

qualitative methods as appropriate. Both parametric and structural uncertainties should be 

considered, and at a minimum, single (and when possible multivariate) deterministic 

sensitivity analyses should be carried out. 

5.	 Scientists modeling health co-benefits should explicitly consider consulting with or 

including decision analysis experts to ensure that the results are useful in formal decision 

analysis processes. Such collaboration should be initiated at the inception of the modeling 

effort and should anticipate the ultimate application of the modeling results. 

By improving the quality and rigor of health co-benefits analyses, critical decisions regarding 

climate mitigation strategies can be informed by health impact estimates, aiding policymakers in 

their efforts to maximize GHG mitigation potential while simultaneously improving health. 
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Table 1. Summary of major health drivers and outcomes modified by select mitigation 

strategies. 

Sector Mitigation strategy Health drivers Health and related outcomes 
potentially affected 

Energy 
(Burtraw et al. 2003; 
Markandya et al. 
2009) 

Reduce fossil fuel 
combustion 

Reduce conventional air 
pollutants: particulate matter, 
ozone, NOx, VOC’s 

Cardiovascular morbidity and 
mortality; asthma and other 
respiratory diseases; developmental 
disorders; improved crop survival 
and productivity 

Energy Increase production of some 
types of biofuels 

Increase food prices and lower 
availability depending on 
whether they compete directly 
with food crops 

Food insecurity; malnutrition 

Energy Carbon capture and 
sequestration 

Groundwater availability and 
quality; contamination with 
metals and minerals, sudden 
CO2/H2S releases 

Various related to specific 
contaminants 

Transportation 
(Cifuentes et al. 2001; 
Maizlish et al. 2013; 
Shindell et al. 2011; 
Woodcock et al. 2013) 

Improve fuel economy; 
increase adoption of electric 
and other non-combustion 
engines; tighter on-road 
vehicle emissions standards 

Reduce conventional air 
pollutants 

Cardiovascular morbidity and 
mortality; asthma and other 
respiratory diseases; 

Transportation Increase access and 
convenience of active 
modes of transportation, 
including walking, biking, 
and public transit 

Reduce conventional air 
pollutants 

Cardiovascular morbidity and 
mortality; asthma and other 
respiratory diseases; developmental 
disorders 

Transportation Increase physical activity levels Cardiovascular morbidity and 
mortality; obesity and diabetes risk; 
risk of certain cancers; dementia, 
depression, injury risk 

Agriculture 
(Friel et al. 2009; 
McMichael et al. 2007) 

Reduce ruminant livestock 
production; capture methane 
emissions 

Reduce ozone air pollution Cardiovascular and respiratory 
morbidity and mortality 

Agriculture Reduce consumption of animal 
products with high levels of 
saturated fat; reduce red and 
processed meat consumption 

Cardiovascular morbidity and 
mortality; risk of certain cancers 
including large bowel cancer 

Land use in built 
environment 
(Younger et al. 2008) 

Increase green space and 
parks in built environment; 
increase shading and 
vegetation along roads 

Increase physical activity; 
reduce excessive temperature 
exposure 

Cardiovascular risk; some cancer 
risks; mental health 
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Table 2. Time lags over which the health co-benefits accrue for the mitigation strategies 

explored in recent health effects of mitigation modeling studies (Friel et al. 2009; Jarrett et al. 

2012; Wilkinson et al. 2009; Woodcock et al. 2013). 

Health outcomes Likely time-lags for 
health co-benefits 

Reductions in sudden cardiac death risk due to reduced air pollution Days to weeks 
Reduction in acute respiratory infections in children due to reduced 
air pollution 

Weeks and months 

Reduction in chronic obstructive pulmonary disease (COPD) 
exacerbations 

Weeks and months 

Reduction in ischemic heart disease (IHD) events due to partial 
substitution of animal source saturated fat consumption by 
polyunsaturated fats of plant origin 

Years 

Reduction in type 2 diabetes due to change in physical activity Years 
Reduction in depression due to change in physical activity Years 
Reduction in COPD prevalence due to reduced air pollution Decades 
Reduction in breast and colorectal cancer incidence due to change 
in physical activity 

Decades 
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Table 3. The types of downstream uncertainties in recent health effects of mitigation modeling 

studies (Friel et al. 2009; Maizlish et al. 2013; Wilkinson et al. 2009; Woodcock et al. 2013); 

these uncertainties are naturally not unique to co-benefits modeling. 

Sector Parametric uncertainties Structural uncertainties 
Household energy 
Specification of 
mitigation scenarios 

Average value of reduction in GHG 
emissions due to insulation 
improvements 

Feasible transitions from household fossil fuel 
combustion to electricity 

Estimating exposures Values of the parameters of building 
physics model 

Occupant behavior and increased 
consumption of resources given higher end-
user efficiency 

Estimating health impacts Values of the pollutants’ relative-risk 
(RR) coefficients 

Pollutants to consider in the assessment 

Urban land transport 
Specification of 
mitigation scenarios 

Percentage increase in the level of 
active travel (walking and cycling) 

Non-linear “safety in number” effect of 
increase in proportion of cyclists on rates of 
cyclist injuries; different future “active travel 
visions” 

Estimating Exposures The values of the parameters of the 
emission-dispersion air pollution model 

Reduction of emissions from transport in 
London are representative for other European 
cities; reduction in transport emissions results 
in proportional reduction in particulate matter 

Estimating health impacts The values of the physical activity-
disease RR coefficients 

Diseases affected by physical activity; linear 
versus non-linear relationships between 
physical activity and health outcomes 

Food and Agriculture 
Specification of 
mitigation scenarios 

Percentage reduction in livestock 
production by 2030 

Contribution of different livestock to 
greenhouse emissions and different 
assumptions about feedstocks 

Estimating exposures Percentage reduction in intake of 
saturated fat 

Full replacement of saturated fats with 
polyunsaturated fats 

Estimating health impacts Saturated fat - ischemic heart disease 
(IHD) mortality relative risk coefficient 

Exposure-health outcome pathways 
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Figure Legend  

Figure 1. Common approach of health effects of mitigation modeling showing scoping activities 

that define the initial and boundary conditions of the analysis; impact assessment; valuation 

procedures; and sensitivity and uncertainty analyses, the results of which can be used to further 

refine impact assessment and valuation analyses (dotted lines). 
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